

Max Marks:60

5.

Date: 13.08.2022

ARJUNA BATCH CHEMISTRY: DCT Topic: Halogen+Zero+Solution

- 1. A black compound of manganese reacts with a halogen acid to give greenish yellow gas. When excess of this gas reacts with NH₃ an unstable trihalide is formed. In this process the oxidation state of nitrogen changes from _____. (a) -3 to +3 (b) -3 to 0 (c) -3 to +5 (d) 0 to -3
- 2. In the preparation of compounds of Xe, Bartlett had taken O_2^+ Pt F_6^- as a base compound. This is because
 - (a) both O_{2+} and Xe have same size
 - (b) both O_2 and Xe have same electron gain enthalpy.
 - (c) both O_2 and Xe have almost same ionisation enthalpy.
 - (d) both Xe and O_2 are gases.
- 3. In solid state PCl₅ is a _____
 - (a) covalent solid
 - (b) octahedral structure
 - (c) ionic solid with $[PCl_6]^+$ octahedral and $[PCl_4]^-$ tetrahedra
 - (d) ionic soild with $[PCl_4]^+$ tetrahedral and $[PCl_6]^-$ octahedra
- 4. Reduction potentials of some ions are given below. Arrange them in decreasing order of oxidizing power.

	Ion		lO_{4}^{-}	lO_4^-		BrO_4^-		
	Reduction		19V	1.65 V		1.74V		
	Potential E ^v /V							
(a)	$ClO_4^- > lO_4^- > BrO_4^-$				(b)	<i>l0</i> ₄ -> <i>Br0</i> ₄ -> <i>Cl0</i> ₄ -	1	
(c)	$BrO_{4}^{-} > lO_{4}^{-} > ClO_{4}^{-}$				(d)	$BrO_4^- > ClO_4^- > lO_4^-$	D_{4}^{-}	
Whicl	h of the following is is	oelectr	onic pair	?				
(a)	ICl ₂ , ClO ₂	(b)	Br0 ⁻ ₂ ,	BrF_2^-	(c)	ClO ₂ , BrF	(d)	CN^{-} , O_3

- (a) HI > HBr > HCl > HF: Acidic property in water
 - (b) $F_2 > Cl_2 > Br_2 > I_2$: Electronegativity
 - (c) $F_2 > Cl_2 > Br_2 > I_2$: Bond dissociation energy
 - (d) $F_2 > Cl_2 > Br_2 > I_2$: Oxidising power.
- 7. The correct order of increasing bond angles in the following species is :
 - (a) $\operatorname{Cl}_2 O < \operatorname{Cl}_2 O < \operatorname{Cl}_2 < \operatorname{Cl}_2$ (b) $\operatorname{Cl}_2 O < \operatorname{Cl}_2 O < \operatorname{Cl}_2$
 - (c) $Cl_2O < ClO_2 < ClO_2^-$ (d) $ClO_2 < Cl_2O < ClO_2^-$
- 8. When Cl₂ gas reacts with hot and concentrated sodium hydroxide solution, the oxidation number of chlorine changes from
 - (a) zero to + 1 and zero to -5 (b) zero to -1 and zero to +5
 - (c) zero to -1 and zero to +3 (d) zero to +1 and zero to -3
- 9. Which of the following statement is true?
 - (a) In aqueous medium, HF is a stronger acid than HCl
 - (b) $HClO_4$ is a weaker acid than $HClO_3$
 - (c) HNO_3 is a stronger acid than HNO_2
 - (d) H_3PO_5 is a stronger acid than H_2SO_3 .

10. A 0.004 M solution of Na₂SO₄ is isotonic with 0.010 M solution of glucose at the same temperature. The apparent percentage dissociation of Na₂SO₄ is

- (a) 25% (b) 50% (c) 75% (d) 85%
- 11. When 20 g of naphthoic acid ($C_{11}H_8O_2$) is dissolved in 50 g of benzene (K = 1.72 K kg mol⁻¹) a freezing point depression of 2 K is observed. The Van't Hoff factor 'i' is (a) 0.5 (b) 1 (c) 2 (d) 3
- 12. The freezing point (in °C) of a solution containing 0.1 g of $K_3[Fe(CN)_6]$ (mol. Wt. 329) in 100 g of water ($K_f = 1.86 \text{ K kg mol}^{-1}$) is (a) -2.3×10^{-2} (b) -5.7×10^{-2} (c) -5.7×10^{-3} (d) -1.2×10^{-2}

Single Digit Answer

13. How many of the following solutions show negative deviation from ideal behaviour?

Chloroform + diethyl ether, acetone + aniline, water + nitric acid, acetone + ethyl alcohol, acetone + carbon disulphide, chloroform + nitric acid

0	1	2	3	4	5	6	7	8	9

14. Which of the following solution will boil above 373 K ? 0.1 M NaCl, 0.1 M Glucose, 0.1 M BaCl₂ solution, 0.1 M Sucrose, 0.1M KNO₃ 0.1M Na₂SO₃, 0.1 M K₄ [Fe(CN)₆], 0.1 M K₂ CO₃.

0	1	2	3	4	5	6	7	8	9	
---	---	---	---	---	---	---	---	---	---	--

15. How many of the following concentration units are independent of temperature? Molarity, mole fraction, normality, formality, molality Vol % mass%

0	1	2	3	4	5	6	7	8	9
---	---	---	---	---	---	---	---	---	---

Max Marks: 60

Date: 13.08.2022

ARJUNA BATCH MATHEMATICS : DCT Topic: Inverse Trigo Function

16.	If $\cos^{-1}x + \cos^{-1}y + \cos^{-1}z = 3\pi$, then : $x(y + z) + y(z + x) + z(x + y) =$									
	(a)	0	(b)	1	(c)	6	(d)	12		
17.	If cos ⁻	$\sqrt{1}\sqrt{p} + \cos^{-1}\sqrt{1-p} + cos^{-1}\sqrt{1-p}$	$-\cos^{-1}\sqrt{2}$	$\overline{1-q} = \frac{3\pi}{4}$, then $q =$						
	(a)	1	(b)	$\frac{1}{\sqrt{2}}$	(c)	$\frac{1}{3}$	(d)	$\frac{1}{2}$		
18.	sin{ta	$\mathbf{n}^{-1}\left[\frac{1-\mathbf{x}^2}{2\mathbf{x}}\right] + \cos^{-1}\left[\frac{1-\mathbf{x}^2}{2\mathbf{x}}\right]$	$\left[\frac{1-x^2}{1+x^2}\right]$	}=						
	(a)	0	(b)	1	(c)	$\sqrt{2}$	(d)	$\frac{1}{\sqrt{2}}$		
19.	If sin ⁻¹	$x + \sin^{-1}y = \frac{2\pi}{3}, \text{ the}$	en : cos-	$^{1}x + \cos^{-1}y = \dots$						
	(a)	$\frac{2\pi}{3}$	(b)	$\frac{\pi}{3}$	(c)	$\frac{\pi}{6}$	(d)	π		
20.	A solu	tion of the equation	tan ⁻¹ (1 -	$(+x) + \tan^{-1}(1-x) = \frac{\pi}{2}$	$\frac{\tau}{2}$ is					
	(a)	x = 1	(b)	x = -1	(c)	$\mathbf{x} = 0$	(d)	$\mathbf{x} = \boldsymbol{\pi}$		

Learning with the Speed of Mumbai and the Tradition of Kota

21.	If sin ⁻¹	$x = \frac{\pi}{5}$ for some $x \in$	≡ (−1,1),	then : $\cos^{-1}x =$				
	(a)	$\frac{3\pi}{10}$	(b)	$\frac{5\pi}{10}$	(c)	$\frac{7\pi}{10}$	(d)	$\frac{9\pi}{10}$
22.	$\tan^{-1}\left(\frac{1}{2}\right)$	$\left(\frac{x}{y}\right) - \tan^{-1}\left(\frac{x-y}{x+y}\right) =$:					
	(a)	$\frac{\pi}{2}$	(b)	$\frac{\pi}{3}$	(c)	$\frac{\pi}{4}$	(d)	$\frac{\pi}{4}$ or $\frac{3\pi}{4}$
23.	The do	main of the function	f(x) =	$\frac{\sqrt{9-x^2}}{\sin^{-1}(3-x)}$ is				
	(a)	(2,3)	(b)	[2, 3)	(c)	(2,3]	(d)	none of these
24.	The do	main of the function	f(x) =	$\sqrt{3-x} + \cos^{-1}\left(\frac{3-2x}{5}\right)$	$\left(\frac{1}{2}\right)$ is			
	(a)	[-1, 3]	(b)	(-1,3]	(c)	[-1, 3)	(d)	none of these
25.	The do	main of the function	f(x) =	$\cos^{-1}\left(\frac{2- x }{4}\right) + \frac{1}{\log(2)}$	$\frac{1}{3-x}$ is			
	(a)	[-6, 3) - {2}	(b)	$[-6,3) \cup (2,3]$	(c)	[-6, 3]	(d)	[-6, 2]
26.	The do	main of the function	f(x) =	$\sin^{-1}\left(\frac{x-3}{2}\right) - \log_{10}(4)$	1–x) is			
	(a)	(1, 4)	(b)	[1, 4]	(c)	[1, 4)	(d)	(1, 4]

Learning with the Speed of Mumbai and the Tradition of Kota

27. The domain of the function
$$f(x) = \sqrt[3]{1-3x} + 3\cos^{-1}\left(\frac{2x-1}{3}\right) + e^{3\tan x}$$
 is
(a) [-1, 2] (b) (-1, 2) (c) R (d) none of these
28. The domain of the function $f(x) = \sqrt{\cos^{-1}\left(\frac{1-|x|}{2}\right)}$ is
(a) $(-\infty, -3) \cup (3, \infty)$ (b) [-3, 3] (c) $(-\infty, -3) \cup [3, \infty)$ (d) {}
29. The domain of the function $f(x) = \sqrt{\sin^{-1}(\log_2 x)}$ is
(a) $(1, 2)$ (b) [1, 2) (c) $(1, 2]$ (d) [1, 2]
30. The range of the function $\sin^{-1}\left(\frac{x^2}{1+x^2}\right)$ is
(a) $\left(0, \frac{\pi}{2}\right)$ (b) $\left[0, \frac{\pi}{2}\right]$ (c) $\left[0, \frac{\pi}{2}\right]$ (d) none of these

Max Marks: 60

Date: 13.08.2022

ARJUNA BATCH CHEMISTRY: DCT ANSWER KEY Topic: Halogen+ Zero+ Solution

1.	(a)	2.	(c)	3.	(d)	4.	(c)	5.	(b)
6.	(c)	7.	(b)	8.	(b)	9.	(c)	10.	(c)
11.	(a)	12.	(a)	13.	(4)	14.	(8)	15.	(3)

Max Marks: 60

Date: 13.08.2022

ARJUNA BATCH MATHEMATICS : DCT Topic: Inverse Trigo Function

16.	(c)	17.	(d)	18.	(b)	19.	(b)	20.	(c)
21.	(a)	22.	(c)	23.	(b)	24.	(a)	25.	(a)
26.	(c)	27.	(a)	28.	(b)	29.	(d)	30.	(b)